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1 Introduction

1 Introduction

We propose two specification tests for models defined by conditional moment restrictions (CMR).
The null hypothesis of interest is that the model is correctly specified in the sense that there
exists a (set of) parameter value(s) θ0 that makes the conditional moment restrictions satisfied
with probability one. Note that we do not impose any identification assumption, and the null
hypothesis allows for the possibilities of weak and partial identification. We moreover do not
require any smoothness or continuity assumptions under the null hypothesis.

Although there are quite a few specification tests that can be used in a similar context, virtually
all such tests impose strong point identification under the null hypothesis and differentiability of the
moment conditions Moreover, they typically exploit the fact that the unique θ0 is

√
n–consistently

estimable under the null (and sometimes even under the alternative). See e.g. Bierens (1990),
Zheng (1996), Fan and Li (1996, 2000), Koul and Ni (2004), Delgado, Domı́nguez and Lavergne
(2006); see Robinson (1991) and others for nonparametric independence tests. However, there
are many economic examples in which a model does not provide point identification even when the
specification is correct; see e.g. Chernozhukov, Hong, and Tamer (2007). Also, as Staiger and Stock
(1997) and Stock and Wright (2000) have shown, even point–identified models can be difficult to
deal with when identification is too weak. For example, tests of overidentifying restrictions based
on two–step methods may suffer from dramatic size distortions under weak identification.

One test statistic that does allow for identification failure was proposed by Guerre and Lavergne
(2005). Their test is similar to Zheng’s except that the conditional error variance function (CEVF) is
estimated fully nonparametrically, i.e. without estimating the (potentially nonidentified) parameter
vector. Guerre and Lavergne moreover introduce a data–dependent (optimal) choice of smooth-
ing parameter and justify a bootstrap approximation. Estimating the CEVF nonparametrically
resolves the identification problem naturally and the Guerre–Lavergne test, unlike ours, is similar.
But nonparametric CEVF estimation rules out a large class of interesting models commonly used
in economics that are prone to causing identification problems, including all models with endoge-
nous regressors. Further, Guerre and Lavergne require smoothness under the null and assume that
the conditioning variables have bounded support. In short, estimating the CEVF nonparametri-
cally (Guerre–Lavergne) is preferable in smooth models containing only exogenous regressors with
bounded support, but does not apply to models which feature more general moment conditions
models considered here and in e.g. Delgado, Domı́nguez and Lavergne (2006).

Our proposed test statistics are the minimum values of objective functions T̂1, T̂2, and they do
not rely on the availability of

√
n–consistent estimators under the null. We show that our tests

have correct size regardless of the identification situation and that they are consistent as long as
the degree of misspecification is not too weak. We also analyze the power of our tests under local
alternatives.

The cost of the robustness properties of our tests is twofold. First, since our statistics are global
minima, they can be conservative in the sense that the rejection rates under the null can be smaller
than the nominal levels. However, when the model is correctly specified with the parameter θ0

being uniquely and strongly identified, the asymptotic size corresponds to the nominal size; our
simulation experiments show that the rejection rates are then close to the nominal levels in moderate
size samples, also. This is not surprising, because the global minimizer of our objective function
is a
√
n–consistent estimator in this case. In fact, the global minimizer of T̂2 is then an efficient
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estimator of θ0 under homoskedasticity.1 A second, more serious, problem is that the power of our
test is necessarily no greater than that of the two–step version because our test statistic minimizes T̂2

(say) while the two–step version evaluates T̂2 at the first step estimate. The difference between the
minimum of T̂2 and the value of T̂2 at the first–step estimate can be large under weak identification
when the two–step test is invalid. But it can also be large if the conditional variance of the specified
moment function varies more under the alternative than under the null, because the minimizer of
T̂2 and the first step estimator in the two–step procedure may have different probability limits
under the alternative.

The paper most closely related to ours is Zheng (1996). Zheng proposed a two–step approach
using kernel weights with scalar moment conditions. Extending his results to the vector–valued
continuous–updating case would be similar to the tests we propose in this paper. Like Robinson
(1987), we use k–nearest neighbor (knn) weights instead of kernel weights. Using the knn method
has two advantages. First, unlike the Zheng test, the local power of our test is invariant to trans-
formations of exogenous conditioning variables. Zheng’s test can probably be changed to achieve
invariance at the cost of an unnatural and undesirable trimming procedure or (like Guerre and
Lavergne (2005)) by assuming that the regressors have compact support. The second advantage of
our procedure over a version of Zheng’s is that under strong point identification the minimizer of
our objective function is, as mentioned earlier, efficient.

The moments used here are based on parametric functions and our test does hence not cover
semiparametric models like the partial linear model of Robinson (1988). For such models, the Fan
and Li (1996) test is a natural choice.

The paper is organized as follows. We first define our statistics and discuss their properties
under the null hypothesis. We then show their consistency properties under the traditional fixed
alternative. Section 4 studies the behavior of our test under classical local alternatives, and we
compare our test with Zheng (1996). Section 5 contains a modest simulation study and section 6
concludes.

2 Hypotheses and Test Statistics

Let {ωi, zi} be an i.i.d. random sequence and m̃i(θ) = m̃(ωi, θ) be a d–dimensional vector–valued
function, where zi is a dz–dimensional vector of exogenous variables that may be contained in ωi.
We are interested in testing the null hypothesis that for some value θ0, E[m̃i(θ0)|zi] = 0 a.s., i.e.

H0 : ∃θ0 ∈ Θ s.t. P
(
‖E(m̃i(θ0)|zi)‖ = 0

)
= 1 (1)

H1 : P
(

inf
θ∈Θ
‖E(m̃i(θ)|zi)‖ 6= 0

)
> 0. (2)

Before we describe our statistics in detail, we provide a few examples of situations in which our test is
useful. Example I is a standard situation in which under the null hypothesis the regression function
of interest has a prespecified parametric functional form. Example II deals with identification failure
due to weak instruments, which is not covered by standard nonparametric testing procedures.

1We do not show efficiency of the estimator in this paper. Note that an estimator derived from a kernel–based
specification test is known to be inefficient even under homoskedasticity; see Linton (1997, 1998). The estimator
minimizing T̂2 is comparable with Koul and Ni’s (2004); their minimum distance estimator has the same variance as
the standard nonlinear least squares estimator, but does not allow for endogeneity.

2



2 Hypotheses and Test Statistics

Example I (Testing a Functional Form in Regression Models) Suppose that

H0 : P
(
E(yi|zi) = f(zi, θ0)

)
= 1 for some θ0 ∈ Θ

H1 : P
(
E(yi|zi) = f(zi, θ)

)
< 1 for all θ ∈ Θ,

where f(zi, θ) is a known function. See e.g. Zheng (1996), Fan and Li (1996, 2000), and Guerre
and Lavergne (2005).

Example II (Unidentified IV Models) Consider a simple IV model given by

E(yi − Yiθ0|zi) = 0,

where yi is a scalar outcome variable, Yi is a scalar endogenous variable, and zi is a vector of
instruments. Note that the (conditional) variance of ui = yi − Yiθ0 cannot be estimated without
estimating θ0. Therefore, the method of Guerre and Lavergne (2005) cannot be applied. Suppose
that the instruments are not relevant such that E(Yi|zi) = 0 a.s.. If P

(
E(yi|zi) 6= 0

)
> 0, then the

specification is incorrect, because there is no parameter value that achieves the moment condition.
If E(yi|zi) = 0 a.s., then the specification is correct but the parameter of interest is not identified.
See e.g. Staiger and Stock (1997). In this case, we cannot reject the model on the basis of the
available data.

We now proceed by describing our testing procedures. Under the null hypothesis there exists a
θ0 such that

E
(∥∥E(m̃i(θ0)|zi

)
‖2
)

= 0. (3)

One possibility is to use a
√
n–consistent plugin estimator θ̂ of θ0 and estimate the left hand side in

(3) evaluated at θ̂. We instead consider continuous–updating type statistics, i.e. our test statistic
evaluates an estimator of the left hand side in (3) at its minimizing value in order to achieve validity
in situations like example II.

As mentioned in the introduction, we estimate the expectation in (3) using knn estimation,
which is similar to kernel (regression) estimation in that it estimates a conditional mean by taking
a weighted average over nearby observations (see e.g. Stone (1977), Robinson (1987)). The knn
weights wij we use are determined as follows; see Robinson (1987) for a similar definition.

Definition A Let k be such that 1 ≺ k ≺ n, where ≺ (�) means that the left hand side converges
faster (slower) than the right hand side. Let further ci(j) be any chosen constant, such that for
all i, (i) ci(j) = 0 for j > k, (ii) for fixed positive C−w , Cw independent of n, C−w ≤ ci(j) ≤ Cw
for 1 ≤ j ≤ k, and (iii)

∑k
j=1 ci(j) = 1. Define ρij = ‖zi − zj‖, let {υij} be independent random

numbers drawn from a standard uniform distribution, and

ζij =
∑
t6=i

I(ρit < ρij), Ψij = {t 6= i : ρit = ρij}, ψij =
∑
t∈Ψij

I(υit < υij).

Then wij = 0 if j = i and wij = ci(ζij + ψij + 1) if j 6= i.

We make the following assumptions. Let V (θ) = E
(
V (m̃i(θ)|zi)

)
.

Assumption A V (θ0) = Var
(
m̃i(θ0)|zi

)
with 0 < ||V (θ0)|| <∞.
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2 Hypotheses and Test Statistics

Assumption B There is an M∗ such that P
(
E(‖m̃i(θ0)‖4|zi) > M∗

)
= 0.

Assumption A says that m̃i(θ0) is homoskedastic under the null. Although it is restrictive, it
can be relaxed at the expense of longer proofs; we do this for the scalar moment case in theorem
2. With homoskedasticity, V (θ0) = V (m̃i(θ0)) under the null hypothesis. Note however that V (θ)
is less than V (m̃i(θ)) when θ is different from θ0. Assumption B is a restriction on the distribution
of m̃i(θ0). Unlike Guerre and Lavergne (2005), we do not require zi to have compact support.

We explicitly allow for the possibility of weak instruments by permitting µ̃i(θ) = E(m̃i(θ)|zi)
to vary with the sample size n, i.e. we impose the existence of a function µ̃∗i which does not depend
on n and a nonincreasing deterministic sequence of numbers λ, which can depend on n, such that

µ̃i(θ) = λµ̃∗i (θ) a.s.. (4)

This allows for the possibility that instruments are so bad and the degree of misspecification is so
minor that it is not meaningful to distinguish between poor identification and correct specification
in finite samples. Note that this setup resembles but is different from classical local alternatives;
see e.g. Eubank and Spiegelman (1990), Härdle and Mammen (1993) and Zheng (1996), and also
section 4. They are similar in the sense that both of them are asymptotic tools designed to improve
our understanding of the finite sample properties of tests. While classical local alternatives are
intended to study finite sample power with identification being imposed, we introduce λ because
we are concerned about the behavior of the tests under the null with weak or partial identification.

We now define our test statistics. Since V (θ) is unknown, we estimate it by

V̂ (θ) = n−1
∑
ij1j2

wij1wij2
(
m̃i(θ)− m̃j1(θ)

)(
m̃i(θ)− m̃j2(θ)

)′
.

Letting m̂i(θ) = V̂ (θ)−1/2m̃i(θ), define

T̂1(θ) =

∑
ij aijm̂i(θ)′m̂j(θ)√

2d
∑

i 6=j a
2
ij

−
d
∑

i aii√
2d
∑

i 6=j a
2
ij

=
tr(M̂(θ)′AM̂(θ))√

2d
∑

i 6=j a
2
ij

− d tr(A)√
2d
∑

i 6=j a
2
ij

(5)

T̂2(θ) =

∑
ij wijm̂i(θ)′m̂j(θ)√
d
∑

ij wij(wij + wji)
=

tr(M̂(θ)′WM̂(θ))√
d
∑

ij wij(wij + wji)
, (6)

where k is chosen to satisfy n3/4 ≺ k ≺ n for T̂1 and 1 ≺ k ≺ n for T̂2; M̂(θ) is an n×d matrix whose
ith row is m̂i(θ)′, and aij =

∑n
t=1wtiwtj is the i, j element of A = W ′W > 0 with W containing

wij . The denominators can be shown to be bounded away from zero such that T̂1(θ) and T̂2(θ) are
always well-defined. The test statistics are then

T̂s = inf
θ∈Θ

T̂s(θ), for s = 1, 2. (7)

The numerator of T̂1 is n times n−1
∑n

i=1 ‖µ̂i(θ)‖2, with µ̂i a knn estimator of µi. T̂2 is a leave–
one–out version of T̂1 and is similar to the statistics considered in Zheng (1996) and Fan and Li
(1996), but using knn instead of kernel weights and continuous updating instead of plugin.2

2Assuming strong point identification of θ0, the minimizer of (7) can be shown to be an efficient estimator for θ0.
Under partial identification, the limit function of T̂s(θ) (after rescaling) is E

`
‖µi(θ)‖2

´
. An interesting estimator of

the identified set is the collection of points θ for which T̂s(θ) is below some sample size–dependent number, much in
the spirit of Chernozhukov, Hong, and Tamer (2007).
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2 Hypotheses and Test Statistics

Theorem 1 Suppose that assumptions A – B hold and let qα be the 1−α quantile of the standard
normal. Then, under H0, the test statistics T̂1 and T̂2, with k chosen as indicated below equation
(6), satisfy

lim
n→∞

P (T̂1 > qα) ≤ α and lim
n→∞

P (T̂2 > qα) ≤ α,

regardless of λ and uniqueness of θ0.

Theorem 1 shows that the proposed statistics always have correct size and that they do not rely
on the availability of a consistent estimator of θ0. Note also that theorem 1 does not require any
assumption on m̃i(θ) except that they have uniformly bounded conditional fourth moments at θ0.
Therefore, our statistics can also be used for (instrumental) quantile models. Note that assumption
A is always satisfied in (instrumental) quantile models.

We now extend the results of theorem 1 to allow for heteroskedasticity under the null. To
conserve space, we only do this for scalar–valued m̃i(θ), i.e. d = 1, and only for T̂2. Define σ2

i (θ) =
E
(
m̃2
i (θ)|zi

)
such that σ2

i (θ0) is the conditional variance of m̃i(θ0) under the null.3 Since σ2
i (θ)

is unknown, it should be nonparametrically estimated, σ̂2
i (θ) =

∑
j wijm̃

2
j (θ). Letting m̂H

i (θ) =
m̃i(θ)/σ̂i(θ), define

T̂H2 = inf
θ∈Θ

T̂H2 (θ) =

∑
ij wijm̂

H
i (θ)m̂H

j (θ)∑
ij wij(wij + wji)

.

We then have the following theorem, which is an extension of theorem 1 to heteroskedasticity.

Theorem 2 Suppose that assumption B holds and that E
(
|m̃2

i (θ0) − σ2
i (θ0)|p∗

)
< ∞ for some

p∗ > 6. Suppose that there is a constant Cs > 0 such that Cs ≤ σ2
i (θ0) <∞ a.s.. Let k � n1/3+2/p∗,

and let qα be the 1− α quantile of the standard normal. Then, under H0,

lim
n→∞

P (T̂H2 > qα) ≤ α,

regardless of λ and uniqueness of θ0.

Theorems 1 and 2 show that the rejection probability under the null is asymptotically no greater
than the nominal size. Since the tests are not similar absent strong point identification, there could
be local alternatives under weak or partial identification for which our tests have power smaller than
α. Although our tests are hence biased, we note that it is not generally possible to construct an
asymptotically pivotal specification test that is similar under weak or partial identification. Indeed,
tests of conditional moment restrictions require estimates of both the conditional moments and the
conditional error variance. Unless the conditional error variance does not depend on any unidentified
or weakly identified parameters, the conditional error variance cannot be consistently estimated.
One case in which the conditional error variance function can be estimated is a regression model
with only exogenous regressors, because in that case the conditional error variance is the same as the
conditional variance of dependent variable given regressors; see e.g. Guerre and Lavergne (2005).
Under partial identification, Guggenberger, Hahn, and Kim (2007) showed that specification tests
of nonlinear moment inequalities have the form of nonlinear one–sided hypothesis tests of which no
implementable asymptotically exact size ones are known (see also Wolak (1991)).

3Using σ∗i (θ)2 = V (m̃i(θ)|zi) will increase power, although σ∗i
2(θ0) = σ2

i (θ0) under the null. We consider σ2
i (θ)

here for simplicity.
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3 Strong Misspecification and Consistency of the Tests

In this section, we show that the probability of rejecting the null under the alternative converges
to 1, when λ 6= 0 is fixed. As explained in section 2, this analysis establishes consistency against a
fixed alternative. Local alternatives are considered in section 4.

We make the following assumptions. Let mi(θ) = V (θ)−1/2m̃i(θ) and µi(θ) = V −1/2(θ)µ̃i(θ).

Assumption C The parameter space Θ is compact.

Assumption D infθ∈Θ ‖V (θ)‖ > 0 and supθ∈Θ ‖V (θ)‖ <∞.

Assumption E For some 1 < p <∞, E(supθ∈Θ ‖µi(θ)‖p) <∞.

Assumption C is standard and so is assumption D. In fact, assumption D is related to, but
weaker than, uniform boundedness (away from zero) of the conditional variance, as in Robinson
(1987). Note that assumption E does not impose conditions on the error distribution. For instance,
if mi = yi − Y ′i θ, then assumption E imposes conditions on the moments of E(yi|zi) and E(Yi|zi),
not on those of yi, Yi.

Definition B Let Y be the support of yi. Let F be a collection of functions defined by

F = {f(y, θ) : Y×Θ→ Rd s.t. ∀η > 0 ∃δ > 0 : ‖θ−θ̃‖ < δ ⇒ P (‖f(yi, θ)−f(yi, θ̃)‖ > η) < η}. (8)

Assumption F m,µ ∈ F

F is a collection of functions that are uniformly equicontinuous in θ with probability arbitrarily
close to 1. If f is Lipschitz in θ with probability one, then it belongs to F . Therefore, if mi and µi
are differentiable in θ with bounded derivatives, then they belong to F . However, differentiability
of mi is not needed to satisfy assumption F. For example, I(yi ≤ θ), with I the indicator function,
also belongs to F , as long as yi has a well–defined density. Note also that if f(yi, θ) ∈ F , then
g(yi)f(yi, θ) also belongs to F as long as g(yi) is bounded in probability.4 Therefore, assumption
F in fact implies that m̃, m̃2, m̃4 are all in F .

Theorem 3 Suppose that assumptions C – F hold. If λ 6= 0 is fixed, then under H1, for any C > 0,
we have

lim
n→∞

P (T̂1 > C) = 1 and lim
n→∞

P (T̂2 > C) = 1.

Below we extend theorem 3 to allow for heteroskedasticity but, like before, only for T̂2 and
d = 1, again to conserve space. Let σ2

i (θ), σ̂
2
i (θ), and T̂H2 be defined as in section 2.

Theorem 4 Suppose that assumptions C, E, and F hold and that σ2
i ∈ F . Suppose that

supθ E
(
|m̃2

i (θ)− σ2
i (θ)|p

∗∗)
<∞ for some p∗∗ > 6 and that Cs ≤ infθ σ2

i (θ) ≤ supθ σ2
i (θ) ≤ Cs a.s.

for some constants Cs, Cs > 0. Let k � n1/2+1/p∗∗. If λ 6= 0 is fixed, then under H1, for any C > 0,
we have

lim
n→∞

P (T̂H2 > C) = 1.

4Note that P
`
|g(yi)||f(yi, θ)− f(yi, θ̃)| > η

´
≤ P

`
η0|f(yi, θ)− f(yi, θ̃)| > η

´
+ P

`
|g(yi)| > η0

´
.
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4 Local Alternatives

In this section, we impose strong point identification (θ0 is unique and λ 6= 0 is fixed) and analyze
the power of our statistics under a sequence of local alternatives to the null.

The sequence of local alternatives takes the form

H1L : P
(
µi(θ) = µoi (θ) + δnqi

)
= 1, (9)

where qi = q(zi), µoi (θ) = µo(zi, θ), µoi (θ0) = 0 a.s., and {δn} is a sequence that goes to zero at a
rate of (nk)−1/4, Define θn = arg minθ∈ΘE

(
||µi(θ)||2

)
. We now make a few assumptions on µoi , qi.

Let Γi denote the Jacobian of µoi at θ0.

Assumption G (i) θ0 is in the interior of Θ, (ii) P (µoi (θ) = 0) = 1 ⇔ θ = θ0, and (iii) E(Γ′iΓi)
is invertible.

Let ι2 = E(‖qi‖2)− E(q′iΓi)E(Γ′iΓi)
−1E(Γ′iqi).

Assumption H qi is such that (i) 0 < E(qiq′i) <∞, and (ii) ι2 > 0.

Assumption G guarantees that θn = θ0 − δnE(Γ′iΓi)
−1E(Γ′iqi) + o(δn) under (9). Assumption

H is needed to ensure that 0 < E
(
||µi(θn)||

)
= O(δn) under (9). It excludes the case that the

local deviation qi is in the linear span of Γi a.s.. If it is violated, then µi(θn) = 0 a.s., also. The
same local alternatives were considered in e.g. Zheng (1996), but only in the context of regression
estimation with exogenous regressors.5 Let m(1)i = mθi = ∂mi/∂θ

′, m(2)i = mθθi = ∂ vec(mθi)/∂θ′,
m(3)i = mθθθi = ∂ vec(mθθi)/∂θ′, and likewise for µ(1)i = µθi, µ(2)i = µθθi and µ(3)i = µθθθi.

Assumption I mi(θ) is three times differentiable such that
(i) ∀θ ∈ Θ : E

(
m(j)i(θ)|zi

)
= µ(j)i(θ) a.s. and E

(
supθ ||µ(j)i(θ)||2

)
<∞ for j = 1, 2, 3,

(ii) E
(
||µ(1)i(θ0)||2

)
> 0 and E(||µ(1)i(θ0)||4) <∞,

(iii) there is an M∗∗ such that P
(
E(||mi(θ0)− µi(θ0)||4|zi) > M∗∗

)
= 0.

Assumption I imposes sufficient smoothness on mi, which simplifies our discussion of classical
local alternatives. Let θ̂s = arg minθ∈Θ T̂s(θ), such that T̂s = T̂s(θ̂s).

Theorem 5 Suppose that assumptions A, B, D and G – I hold.6 Then, under (9),

T̂s −
√
nkδ2

nι
2√

k/nDs

d→ N
(
0, 1
)
, s = 1, 2, (10)

where Ds is such that D2
s = Op(n/k) and 1/D2

s = Op(k/n).

Theorem 5 shows that our statistics have power to detect local alternatives approaching to the
null at a rate of δn = (nk)−1/4 when strong point identification of θ0 is assumed. Similar local power
analyses can be found in Eubank and Spiegelman (1990), Härdle and Mammen (1991), Guerre and

5Zheng (1996) implicitly assumes that E(Γ′iqi) = 0. Otherwise, theorem 3 in Zheng (1996) would need a correction
in the mean term of the limiting normal distribution.

6Note that earlier θ0 was defined such that µi(θ0) = 0 a.s.; here µoi (θ0) = 0 a.s.; assumptions A and B now apply
to the current definition of θ0.
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Lavergne (2005), Zheng (1996), and many others. We focus in our comparison on Zheng (1996);
Guerre and Lavergne (2005), theorem 3, achieve the same rate as Zheng (1996) and better than
Horowitz and Spokoiny (2001).

Our result is equivalent to Zheng (1996) in terms of the rate of the local alternatives. Zheng
shows that his test has some power detecting local alternatives approaching to the null at the rate of
n−1/2h−dz/4, where h is a bandwidth. For fixed k the local power of our test does not depend on dz.
However, a knn estimator can be thought of as a kernel estimator with bandwidth hk equal to the
distance to the k–th nearest neighbor, which suggests hdzk ∼ k/n.7 Thus, (nk)−1/4 ∼ n−1/2h

−dz/4
k ,

which is essentially Zheng’s result. So we can always choose k to achieve the same rate as Zheng
and vice versa. In particular, k can be chosen to increase at a rate arbitrarily close to n, in which
case our test can detect alternatives arbitrarily close to n−1/2, in contrast to e.g. Wooldridge (1992);
see Zheng (1996) for a more in–depth discussion.

Zheng assumes that θ0 can be
√
n–consistently estimable under the local alternatives, which

is only true for alternatives for which E(Γ′iqi) = 0.8 Under the local alternatives, θn can be
√
n–

consistently estimated, but the difference between θn and θ0 disappears at the rate at which the
local alternatives approach the null. Since the local alternatives approach the null at a slower rate
than 1/

√
n, the difference between θn and θ0 should be taken into account. Note that assuming

E(Γ′iqi) = 0 makes the expectation of the numerator in (10) equal to E(‖qi‖2) and that of Zheng
equal to E(‖

√
φiqi‖2), where φi = φ(zi) denotes the density of zi.

The fact that Zheng’s local power depends on the density of zi implies that taking transforma-
tions of zi without changing the local alternatives will affect local power. In contrast to Zheng, the
numerator in (10) does not contain the density and therefore it is invariant to transformations of zi.
The following theorem shows that the denominator in (10) is also invariant when zi is scalar–valued;
the case for vector–valued zi is similar but is omitted to conserve space.

Theorem 6 Suppose that assumptions A, B, D, and G – I hold. Suppose further that zi is a scalar
continuous random variable whose density has a uniformly bounded derivative and that {wij} are
uniform nearest neighbor weights (i.e. wij ∈ {0, 1/k}). Then under (9),

T̂2
d→ N

(
ι2√

2
, 1
)
.

To see the implications of the invariance property, consider the ratio of the mean of the local power
of the Zheng test to that of our test for dz = 1 and scalar–valued qi with fixed k, h, and δn, assuming
E(Γiqi) = 0 and homoskedasticity, i.e.√

nhc̆/k ×
E(q2

i φi)/
√
E(φi)

E(q2
i )

, (11)

where c̆ is the square integral of the kernel. The first factor in (11) consists entirely of variables
which do not depend on and are not chosen as a function of the shape of the local alternative. For
a given density φ and fixed choices of smoothing parameters and kernel, there always exists some
local alternative for which the local power of the Zheng test is negligble compared to ours. Indeed,
if φ has unbounded support then for q ∝ 1/

√
φ the ratio is zero.9

7This analogy is imprecise since hk depends on i.
8This condition is not explicitly imposed by Zheng (1996), but it is necessary.
9We assumed E(q2i ) to be finite, but only to keep ι2 well–defined; otherwise some limit argument can be used.
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5 Simulations

Since the null hypothesis allows for weak or partial identification, the local alternatives (9) are
not the only interesting sequence of hypotheses. For instance, we may consider the alternative (2)
with sequential λ shrinking to 0, which is an example of local alternatives that can accomodate
weak identification; in the limit they become the null with no identification. This idea can be
generalized to a sequence of uniform local alternatives such as

P
(
µi(θ) = µoi (θ) + δnqi(θ)

)
= 1, (12)

where µoi (θ) could be 0 at multiple values of θ and some restrictions are imposed on qi(θ).10 In the
working paper version of this paper, we showed that T̂2 is consistent under the sequence of (12), as
long as δn � log n/ 4

√
nk. The rate condition of δn � log n/ 4

√
nk is in fact reminiscent of Jun and

Pinkse (2007). In that paper we show that under the null with point identification and sequential
λ (i.e. µoi = 0, δn = λ, qi = µ∗i ), θ0 can be consistently estimated only when λ � 1/ 4

√
nk (see Jun

and Pinkse (2007)). If, in the case of point identification, θ0 cannot be estimated consistently, then
it is intuitive that departures from the null cannot be detected.

Assuming strong point identification under the null, singular (or high frequency) local alterna-
tives have also been studied in the literature (e.g. Rosenblatt (1975), Fan and Li (2000), Guerre
and Lavergne (2005)). In particular, Fan and Li (2000) showed that kernel–based tests have more
power against such alternatives than integrated–moment–conditions (ICM) type tests. Theorem 7
illustrates that T̂2 is in fact comparable to the result of Fan and Li (2000) and hence it is more
powerful than ICM type tests for singular local alternatives. Consider

H1sL : P
(
µi(θ) = µoi (θ) + δ̃nQin

)
= 1, (13)

where Qin = q
(
(zi − υ)/hn

)
/hdzn with hn a bandwidth and q(s) satisfies (i) Υ1 =

∫
||q(s)||ds <∞,

(ii) Υ2 =
∫
||q(s)||2ds < ∞, (iii) ||s||||q(s)|| → 0 as ||s|| → ∞, (iv) sups ||q(s)|| ≤ Mq and (v)

||q(s)− q(t)|| ≤ Cq||s− t||. Conditions (i)–(iv) are those of usual kernel estimation. Condition (v)
imposes a Lipschitz condition on q(s). We then have the following theorem.

Theorem 7 Suppose that assumptions A, B, D, G and I hold. Suppose that ||z1−z2||dz has compact
support with density f satisfying c ≤ infz f(z) ≤ supz f(z) ≤ C. Suppose that δ̃2

n ∼ hdzn /
√
nk and

that k/n ≺ hdzn ≺ 1. Then, under (13),

T̂2 −
√
nkh−dzn δ̃2

n

f(υ)Υ2√
k/nD2

d→ N(0, 1).

Theorem 7 shows that T̂2 has non–negligible power as long as δ̃n goes to zero more slowly than
k1/4/n3/4 and k/(nhdzn ) converges sufficiently slowly. Recall that T1 requires that n1/2+α ≺ k ≺ n
for some α > 0 whereas T2 only needs 1 ≺ k ≺ n. Therefore, T2 can in fact detect singular
alternatives that are arbitrarily close to n−3/4. Note here that the rate that is arbitrarily close to
n−3/4 is also the best that kernel–based tests can detect (see e.g. Fan and Li (2000)).

5 Simulations

We now compare several specification tests in simulation experiments. The main focus is on the
behavior of the test statistics under the null of correct specification. Throughout this section the

10For instance, functions qi(θ) that are proportional to µoi (θ) should be contained in the null hypothesis.
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5 Simulations

null hypothesis is
H0 : E(yi − Yiθ0|zi) = 0 a.s. for some θ0 ∈ Θ. (14)

Note that the model is given by conditional moment conditions and that the first stage equation
E(Yi|zi) is not specified. We compare the performance of six different statistics: T̂1(θ̂CUE1), T̂2(θ̂CUE2),
T̂2(θ̂), T̂k(θ̂CUEk), T̂k(θ̂), and T̂2(θ0), where T̂1(θ) and T̂2(θ) are defined in equations (5) and (6),
and T̂k(θ) is a kernel–based statistic defined in Zheng (1996).11 T̂2(θ0) is infeasible but it is in-
cluded as a benchmark. θ̂CUE1, θ̂CUE2 and θ̂CUEk denote (not necessarily unique) global minimizers
of T̂1(θ), T̂2(θ), and T̂k(θ), respectively. T̂2(θ̂) and T̂k(θ̂) represent two–step (or plugin) statistics,
where θ̂ is an estimator that is

√
n–consistent for θ0 under strong point identification when the null

hypothesis is satisfied.

Size — Rejection frequencies for several significance levels
α T̂1(θ̂CUE1) T̂2(θ̂CUE2) T̂2(θ̂2SLS) T̂k(θ̂CUEk) T̂k(θ̂2SLS) T̂2(θ0)

0.010 0.004 0.012 0.511 0.012 0.480 0.035
0.025 0.007 0.016 0.533 0.022 0.509 0.050
0.050 0.015 0.025 0.551 0.030 0.531 0.070
0.100 0.027 0.049 0.584 0.045 0.559 0.101
0.200 0.053 0.078 0.626 0.075 0.602 0.171

ρ = 0.5, λ = 1, n = 100, k = 40, h = 0.4, and g̃(zi) = z2
i − 1.

Table 1: Conditional moments with strong identification but unconditional moments with weak
identification (sub–optimal choice of instruments)

We first investigate the size properties of the six statistics, for which we use the following design:{
yi = Yi + ui
Yi = λg̃(zi) + vi,

where ui and vi are drawn from a mean zero multivariate normal distribution with variances equal
to one and covariance equal to ρ, and zi independently from a standard normal. All simulation
results are based on 1,000 replications.

Size — Rejection frequencies for several significance levels
α T̂1(θ̂CUE1) T̂2(θ̂CUE2) T̂2(θ̂SP ) T̂k(θ̂CUEk) T̂k(θ̂SP ) T̂2(θ0)

0.010 0.018 0.018 0.341 0.024 0.362 0.045
0.025 0.027 0.027 0.360 0.030 0.395 0.061
0.050 0.036 0.036 0.382 0.046 0.419 0.077
0.100 0.052 0.056 0.422 0.067 0.455 0.122
0.200 0.077 0.093 0.487 0.106 0.519 0.181

ρ = −0.99, λ = 0.07, n = 200, k = 69, h = 0.35, and g̃(zi) = zi.

Table 2: Conditional moments with weak identification

Tables 1 and 2 contain examples that were constructed to demonstrate problems with the use
of plugin statistics. In table 1, the first–step estimator used is the 2SLS estimator. Since the

11We did not include Guerre and Lavergne’s (2005) test here since it does not apply to the designs used here.
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5 Simulations

2SLS estimator is inconsistent when g̃i is orthogonal to zi — as is the case here — plugging in the
2SLS estimator results in invalid inferences.12 While it is true that using additional powers of zi
as instruments would improve performance in this particular example, it is still possible that g̃i is
(close to) orthogonal to all such instruments.13

Size — Rejection frequencies under the null for the nominal level 5%
dim(zi) n T̂1(θ̂CUE1) T̂2(θ̂CUE2) T̂2(θ̂2SLS) T̂k(θ̂CUEk) T̂k(θ̂2SLS) T̂2(θ0)

1 100 0.030 0.035 0.041 0.038 0.046 0.071
200 0.037 0.036 0.043 0.050 0.056 0.074
400 0.036 0.032 0.040 0.045 0.050 0.070
800 0.034 0.036 0.038 0.044 0.048 0.069

2 100 0.050 0.047 0.053 0.049 0.062 0.081
200 0.039 0.031 0.034 0.034 0.037 0.053
400 0.051 0.042 0.047 0.054 0.059 0.067
800 0.046 0.043 0.044 0.044 0.053 0.069

4 100 0.027 0.041 0.050 0.033 0.041 0.058
200 0.046 0.044 0.046 0.039 0.042 0.054
400 0.054 0.051 0.055 0.040 0.046 0.060
800 0.060 0.040 0.041 0.050 0.052 0.054

8 100 0.020 0.056 0.073 0.025 0.045 0.080
200 0.026 0.048 0.052 0.032 0.046 0.063
400 0.043 0.051 0.054 0.034 0.042 0.060
800 0.060 0.060 0.062 0.030 0.034 0.074

Table 3: Regular cases with strong identification

Plugging in a semiparametric estimator based on knn estimation of gi does not have this prob-
lem, but is not generally valid, either, especially when instruments are weak as the experiment
represented in table 2 shows. The problem here is that the asymptotic behavior of the semipara-
metric estimator is nonstandard (and even inconsistent) under weak identification; see Jun and
Pinkse (2007).

The main problem with the continuous updating statistics is that their true size can be much
less than the nominal size under weak identification (not tabulated). But a conservative test is
preferable to an invalid one. Note also that they cease to be conservative in more regular cases; see
table 3.

Table 3 summarizes the behavior of the statistics in a more standard situation. Here we used
λ = 1 and a linear g̃ and all statistics appear to have reasonable size properties. Note that the
continuous updating versions by definition have lower rejection rates than the corresponding plugin
ones. The differences are modest, which can be ascribed to the fact that all estimators are

√
n–

consistent here.
The rejection rates under the alternative (tables 4 and 5) are by definition again lower for the

continuous updating statistics than for the corresponding plugin versions. The differences can be
substantial if V [mi(θ)|zi] is large for θ far from θ0 because the plugin and continuous updating

12To see this point, note that E
`
zi(yi − Yiθ)

´
= 0 for any θ ∈ R.

13If g̃i is vector–valued, the nonorthogonality requirement becomes a maximum rank condition.
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5 Simulations

Power — Rejection frequencies under the alternative for the nominal level 5%
dim(zi) n T̂1(θ̂CUE1) T̂2(θ̂CUE2) T̂2(θ̂2SLS) T̂k(θ̂CUEk) T̂k(θ̂2SLS) T̂2(θ0)

1 100 0.168 0.201 0.229 0.205 0.232 0.516
200 0.350 0.410 0.442 0.404 0.436 0.843
400 0.710 0.777 0.796 0.761 0.782 0.989
800 0.953 0.969 0.971 0.963 0.966 1.000

2 100 0.152 0.169 0.183 0.169 0.200 0.425
200 0.358 0.355 0.372 0.371 0.395 0.753
400 0.607 0.638 0.654 0.607 0.643 0.971
800 0.926 0.930 0.933 0.924 0.935 1.000

4 100 0.086 0.105 0.126 0.108 0.141 0.280
200 0.231 0.249 0.271 0.253 0.280 0.549
400 0.465 0.444 0.461 0.460 0.501 0.842
800 0.813 0.770 0.777 0.782 0.803 0.993

8 100 0.020 0.092 0.115 0.054 0.099 0.189
200 0.048 0.128 0.150 0.095 0.128 0.313
400 0.090 0.242 0.259 0.224 0.261 0.564
800 0.261 0.438 0.460 0.454 0.477 0.866

Table 4: Regular cases with strong identification — logarithmic alternative

Power — Rejection frequencies under the alternative for the nominal level 5%
n T̂1(θ̂CUE1) T̂2(θ̂CUE2) T̂2(θ̂2SLS) T̂k(θ̂CUEk) T̂k(θ̂2SLS) T̂2(θ0)

100 0.309 0.397 0.441 0.373 0.422 0.489
200 0.617 0.721 0.755 0.688 0.733 0.786
400 0.928 0.970 0.976 0.956 0.969 0.976
800 0.998 1.000 1.000 0.999 0.999 1.000

Table 5: Regular cases with strong identification — inverted normal alternative

estimators can have different probability limits under the alternative. So having a valid test can
hurt power. In our experiments we use designs in which the variances under the null and alternative
are not very different; we use yi = Yiθ0 + 0.2 log(Y 2

i + 1) + ui for the experiments of table 4 and
yi = Yiθ0 + 0.1/

√
φ∗(zi) +ui for those of table 5, where φ∗ is the standard normal density function.

Table 4 suggests that the power of plugin and continuous update versions are similar. Moreover,
the performance of kernel and knn versions is similar, albeit that differences in power between
kernel and knn versions are likely to arise if instruments have distributions very different from the
normal, as in table 5. Although the power difference between kernel and knn estimators is less than
one would expect on the basis of the discussion following theorem 6, one should bear in mind that
(i) the Zheng test is consistent, (ii) E(Γiqi) 6= 0 in this example, and (iii) the choice of smoothing
parameters affects power. Finally, it is apparent that the leave–one–out version of our test (T̂2)
does better than T̂1.

We also conducted a limited set of experiments under a singular local alternative (not tabulated).
The intuitive conclusion of these experiments is that the way the local alternative is structured
largely determines (local) power. For instance, if q in (13) is chosen the same as the kernel in the

12



6 Conclusion

Size — varying with k

k n T̂1(θ̂CUE1) T̂2(θ̂CUE2) T̂2(θ̂2SLS) T̂k(θ̂CUEk) T̂k(θ̂2SLS) T̂2(θ0)
20 100 0.034 0.035 0.042 0.033 0.046 0.067
46 200 0.032 0.036 0.040 0.049 0.056 0.076
81 400 0.026 0.028 0.031 0.043 0.047 0.066
140 800 0.031 0.040 0.042 0.045 0.052 0.072
40 100 0.032 0.028 0.037 0.041 0.052 0.068
69 200 0.037 0.036 0.043 0.050 0.056 0.074
121 400 0.036 0.032 0.040 0.045 0.050 0.070
210 800 0.034 0.036 0.038 0.044 0.048 0.069
60 100 0.047 0.039 0.042 0.043 0.048 0.054
104 200 0.043 0.039 0.048 0.046 0.050 0.075
180 400 0.041 0.037 0.038 0.046 0.051 0.071
315 800 0.040 0.035 0.039 0.045 0.048 0.072

Table 6: Regular cases with strong identification

Zheng test, then the Zheng tests outperform the knn tests. See Guerre and Lavergne (2005) for a
substantial simulation study of their statistic under such alternatives.

Finally, we studied the effect of the choice of smoothing parameter on performance. The results
for size are in table 6 and those for power in table 7. The design is the same as that used to analyze
the size and power properties of the various tests under strong identification. For the kernel–based
statistics the bandwidth was chosen equal to (k/n)1/dz . It is evident that there is some variation
in the size and power properties of all test statistics and that, while smoothing parameters should
always be chosen with some care, all test statistics are fairly insensitive to the choice of smoothing
parameter.

6 Conclusion

We proposed two (closely related) generally applicable nonparametric specification tests, which are
robust to many (identification) problems unrelated to the hypothesis being tested. We find that the
leave–one–out version of our test statistic (T̂2) performs better than the complete quadratic version
(T̂1). Our tests are shown to be asymptotically valid regardless of the identification situation.
Although two–step tests that use plugin estimators may have substantially more power than ours in
some cases, they can be seriously size–distorted. If strong point identification is not in doubt (e.g. in
linear regression models without multicollinearity), then two–step statistics are preferable because
the power of continuous–updating tests is by definition no greater than that of two–step ones;
the only reason to prefer our test to the plugin version is that the test statistic yields an efficient
estimator of the parameter of interest under the null hypothesis. In all other cases, continuous
updating is preferable to plugin. Our simulation study does not reveal substantial differences in
performance between knn and kernel–based statistics. However, a classical local power analysis
shows that knn–based tests are preferable because they are local power invariant.
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6 Conclusion

Power — varying with k

k n T̂1(θ̂CUE1) T̂2(θ̂CUE2) T̂2(θ̂2SLS) T̂k(θ̂CUEk) T̂k(θ̂2SLS) T̂2(θ0)
20 100 0.153 0.180 0.194 0.184 0.212 0.455
46 200 0.356 0.381 0.402 0.385 0.418 0.796
81 400 0.707 0.737 0.745 0.726 0.750 0.984
140 800 0.954 0.966 0.968 0.951 0.956 1.000
40 100 0.162 0.197 0.215 0.190 0.209 0.511
69 200 0.375 0.438 0.462 0.418 0.451 0.834
121 400 0.710 0.776 0.795 0.761 0.783 0.989
210 800 0.955 0.972 0.972 0.960 0.964 1.000
60 100 0.206 0.254 0.278 0.237 0.257 0.517
104 200 0.405 0.478 0.505 0.449 0.478 0.852
180 400 0.715 0.813 0.830 0.785 0.802 0.989
315 800 0.945 0.978 0.979 0.972 0.974 1.000

Table 7: Regular cases with strong identification
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A Proof of Theorem 1

Under H0, the numerators of Ts(θ0) are given by

Ns(θ0) =
∑
i

hii
( d∑
t=1

(mit(θ0)2 − 1)
)

+
∑
i

∑
j<i

(hij + hji)
( d∑
t=1

mit(θ0)mjt(θ0)
)
, (15)

where hij = aij =
∑

twtiwtj for s = 1 and hij = wij for s = 2; we used the fact that Var(mi(θ0)|Zn) =
Id, where Zn denotes z1, · · · , zn. Suppressing θ0, letAi =

∑d
t=1 hii(m

2
it−1) andBi =

∑d
t=1

∑
j<i(hij+

hji)mitmjt and note that

ξi =
Ai +Bi√∑
iE(B2

i |Zn)

forms a martingale difference sequence. Since Ts =
∑

i ξi, the limiting normal distribution of Ts
can be obtained by verifying conditions (i), (ii), and (iii) of lemma D3 in Jun and Pinkse (2007).
See also theorem 24.3 in Davidson (1994). We first show that

∑
iE(B2

i |Z) is bounded away from
0 so that xii is well-defined. Let D2

s =
∑

iE(B2
i |Zn) = d

∑
i

∑
j<i(hij + hji)2. C > 0 will denote a

generic constant throughout.
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Lemma A1 D2
1 = 2d

∑
i 6=j a

2
ij ≥ 2d+ o(1), and D2

2 = d
∑

ij wij(wij + wji) ≥ Cn/k.

Proof: First, note that

D2
1 = 4d

∑
i

∑
j<i

a2
ij = 2d

∑
i

∑
j 6=i

a2
ij

Jensen
≥ 2d

n(n− 1)
(∑

i

∑
j 6=i

aij
)2
.

Now, ∑
i

∑
j 6=i

aij =
∑
t

∑
i

(wti
∑
j 6=i

wtj) =
∑
t

∑
i

(wti(1− wti)) ≥ n(1− C

k
).

Therefore,

D2
1 ≥ 2d

n

n− 1
(1− C

k
)2 → 2d.

For D2
2, note that

∑
ij wij(wij + wji) =

∑
i

∑
j<i(wij + wji)2, where (wij + wji)2 ≥ C

k (wij + wji).
Therefore,

D2
2 ≥

C

k

∑
i

∑
j<i

(wij + wji) =
C

k

∑
ij

wij = C
n

k
. ���

Lemma A2 Suppose that

E
( ∑

i h
2
ii∑

i

∑
j<i(hij + hji)2

)
→ 0 and np/2−1E

( ∑
i

∑
j<i |hij + hji|p(∑

i

∑
j<i(hij + hji)2

)p/2)→ 0 (16)

for some 2 < p ≤ 4. Then, ξi satisfies conditions (ii) and (iii) of lemma D3 in Jun and Pinkse
(2007): i.e.

(a) max
i
|ξi|

p→ 0 and (b)
∑
i

ξ2
i

p→ 1. (17)

Proof: Let
Ãi =

Ai√∑
iE(B2

i |Zn)
and B̃i =

Bi√∑
iE(B2

i |Zn)
.

Noting that

E(Ã2
i ) ≤ CE

( h2
ii∑

i

∑
j<i(hij + hji)2

)
and E(

∣∣B̃i∣∣p) ≤ Cnp/2−1E
( ∑

j<i |hij + hji|p(∑
i

∑
j<i(hij + hji)2

)p/2)
due to assumption B, the Burkholder and the Cr inequalities, we will show that∑

i

E(Ã2
i )→ 0 and

∑
i

E(
∣∣B̃i∣∣p)→ 0 (18)

imply conditions (17). Since maxi |ξi| ≤ maxi |Ãi| + maxi |B̃i|, it follows from the Bonferroni and
Markov inequalities that

P (max
i
|ξi| > 2ε) ≤

∑
i

P (|Ãi| > ε) +
∑
i

P (|B̃i| > ε) ≤ 1
ε2

∑
i

E(Ã2
i ) +

1
εp

∑
i

E(|B̃i|p).
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Therefore, condition (a) follows from (18). For condition (b), note that

P (|
∑
i

B̃i
2 − 1| > ε) ≤ 1

εp/2
E
(∣∣∣∑

i

(
B̃i

2 − E(B̃2
i |Zn)

)∣∣∣p/2)
≤ C

εp/2
E
((∑

i

∣∣∣B̃2
i − E(B̃2

i |Zn)
∣∣∣2)p/4) ≤ C

εp/2
E
(
(
∑
i

B̃4
i )p/4

)
≤ C

εp/2

∑
i

E(|B̃i|p)→ 0, (19)

using the Burkholder inequality, the Cr inequality and condition (18). Now, condition (b) follows
from

|
∑
i

ξ2
i − 1|

Schwarz
≤ |

∑
i

Ã2
i |+ |

∑
i

B̃2
i − 1|+ 2

√∑
i

Ã2
i

√∑
i

B̃2
i . ���

Lemma A3 ξi satisfies condition (i) of lemma D3 in Jun and Pinkse (2007): i.e.
supnE(maxi≤n ξ2

i ) <∞.

Proof: Since ξ2
i ≤ 2(Ã2

i + B̃2
i ), we know that

E(max
i≤n

ξ2
i |Zn) ≤ 2

∑
i

E(Ã2
i |Zn) + 1. (20)

For hij = wij , the lemma is trivially true, because Ãi = 0. For hij = aij , note that

∑
i

E(Ã2
i |Zn) =

∑d
t,s=1

∑
i a

2
ii

(
E(m2

itm
2
is|Zn)− 1

)
2d2

∑
i

∑
j 6=i a

2
ij

B, Schwarz
≤ C

∑
i a

2
ii∑

i

∑
j 6=i a

2
ij

.

Note here that
∑

i a
2
ii =

∑
itsw

2
tiw

2
si ≤ Cn2/k3 → 0 because k is chosen such that n3 ≺ k4

when hij = aij . Therefore, using lemma A1, we know that there is a non-stochastic sequence γn
converging to 0 such that

∑
iE(Ã2

i |Zn) ≤ γn a.s.. It then follows that for any constant C > 0,
there exists N ∈ N such that

∑
iE(Ã2

i |Zn) ≤ max{γ1, γ2, · · · , γN , C} a.s.. Combining this with
(20) completes the proof. ���

Lemma A4 supaE(w21w31w41w51|z1 = a) = O(n−4).

Proof: The proof is similar to that of lemma B3 of Jun and Pinkse (2007). Here, we only consider
the case that P (z1 = a) = 0. As in Jun and Pinkse (2007), define τ(a, b) = P (||z − b|| ≤ ||a− b||)
and A(a) = {b : τ(a, b) ≤ 2k/n}. Let Ni denote the set of neighbors of zi. Since for any a,

E(w21w31w41w51|z1 = a) ≤ C

k4
E(I(z1 ∈ N2)I(z1 ∈ N3)I(z1 ∈ N4)I(z1 ∈ N5)|z1 = a),

it suffices to show that supaE
(
I(z1 ∈ N2)I(z1 ∈ N3)I(z1 ∈ N4)I(z1 ∈ N5)|z1 = a

)
= O(k4/n4).

Let Sj(a, b) =
∑

i 6=j,1 I(||zi − b|| ≤ ||a− b||). Note then that

I(z1 ∈ N2) ≤ I(z1 ∈ N2)I(τ(z1, z2) > 2k/n) + I(τ(z1, z2) ≤ 2k/n)
≤ I
(
S2(z1, z2) < k

)
I
(
τ(z1, z2) > 2k/n

)
+ I
(
τ(z1, z2) ≤ 2k/n

)
≤ I
(
|S2(z1, z2)− (n− 2)τ(z1, z2)| > k

)
+ I
(
τ(z1, z2) ≤ 2k/n

)
.
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A Proof of Theorem 1

It then follows that

E
(
I(z1 ∈ N2)I(z1 ∈ N3)I(z1 ∈ N4)I(z1 ∈ N5)|z1 = a

)
≤ E

(
I(τ(a, z2) ≤ 2k/n)I(τ(a, z3) ≤ 2k/n)I(τ(a, z4) ≤ 2k/n)I(τ(a, z5) ≤ 2k/n)|z1 = a

)
+ C1P

(
|S2(a, z2)− (n− 2)τ(a, z2)| > k

)
+ C2P

(
|S3(a, z3)− (n− 2)τ(a, z3)| > k

)
+ C3P

(
|S4(a, z4)− (n− 2)τ(a, z4)| > k

)
+ C4P

(
|S5(a, z5)− (n− 2)τ(a, z5)| > k

)
.

The RHS2–RHS5 are all the same, and they are bounded by exp(−2k2/(n− 2)) by the Hoeffding
inequlity. The RHS1 is bounded by supa P (z2 ∈ A(a))4 = O(k4/n4) by lemma B2 of Jun and
Pinkse (2007). ���

Lemma A5 Under H0, T1(θ0) d→ N(0, 1) and T2(θ0) d→ N(0, 1).

Proof: In view of lemma A3, it suffices to show that the two conditions of (16) are satisfied. First,
consider T2(θ0). The first condition of (16) is trivially satisfied, because wii = 0. For the second
condition of (16), use lemma A1 to obtain

np/2−1E
( ∑

i

∑
j<i |wij + wji|p(∑

i

∑
j<i(wij + wji)2

)p/2) ≤ Cn−1k−p/2+1E(
∑
ij

wij) = Ck−p/2+1 → 0.

Now T1(θ0). Since
∑

i

∑
j<i(aij+aji)

2 is bounded away from 0 by lemma A1, it suffices to show that
E(
∑

i a
2
ii) = o(1) and n

p
2
−1E(

∑
i

∑
j<i a

p
ij) = o(1). Note first that

∑
iE(a2

ii) =
∑

itsE(w2
tiw

2
si) =

O(n/k2) = o(1) because k is chosen such that n3 ≺ k4 for T̂1. Further,

E(a4
ij) =

∑
t1t2t3t4

E(wt1iwt1jwt2iwt2jwt3iwt3jwt4iwt4j) ≤ Ck−4
∑

t1t2t3t4

E(wt1iwt2iwt3iwt4i)
A4= O(k−4),

which implies that

n
p
2
−1E(

∑
i

∑
j<i

apij)
Jensen
≤ n

p
2
−1
∑
i

∑
j<i

E(a4
ij)

p
4 = O(n

p
2

+1/kp).

Since 2 < p ≤ 4 is arbitrary, using p = 4 completes the proof. ���

Lemma A6 ||V̂ (θ0)−1/2 − V (θ0)−1/2|| is either op(k/n) or o(1), depending on n3/4 ≺ k ≺ n or
1 ≺ k ≺ n.

Proof: We only consider the case of n3/4 ≺ k ≺ n. Suppressing θ0, let ς̂ts and ςts be the t–s
elements of V̂ and V , respectively. Note that

n(ς̂ts − ςts) =
∑
i

(m̃itm̃is − ςts)︸ ︷︷ ︸
=Op(

√
n)=op(k)

−
∑
ij

wijm̃itm̃js︸ ︷︷ ︸
=Op(
√
n/k)=op(k)

−
∑
ij

wijm̃ism̃jt︸ ︷︷ ︸
=Op(
√
n/k)=op(k)

+
∑
ijr

wijwirm̃jtm̃rs︸ ︷︷ ︸
=Op(n/k)=op(k)

.

Since d is finite, it follows that ||V̂ − V || = op(k/n). Now, note that

||V̂ −1 − V −1|| ≤ ||V −1||||V̂ −1||||V − V̂ || ≤ ||V −1||
(
||V̂ −1 − V −1||+ ||V −1||

)
||V − V̂ ||,
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B Proof of theorem 2

which implies that (
1− op(k/n)

)
||V̂ −1 − V −1|| ≤ op(k/n),

because the smallest eigenvalue of V is bounded away from 0. Then, the lemma follows from the
delta method. ���

Proof of Theorem 1: Since P (T̂s > qα) ≤ P (T̂s(θ0) > qα) for s = 1, 2, it suffices to show
that T̂s(θ0) = Ts(θ0) + op(1) due to lemma A5. Suppressing θ0, let ς̂t1t2 and ςt1t2 denote the t1–t2
elements of V̂ −1/2 and V −1/2, respectively. Note that

|T̂s − Ts| =
∣∣∣ d∑
t1,t2,t3=1

(
ς̂t1t2 ς̂t1t3 − ςt1t2ςt1t3

)(∑
ij

hijm̃it2mjt3

)∣∣∣/Ds

≤ d3 max
t1,t2,t3

∣∣∣ς̂t1t2 ς̂t1t3 − ςt1t3ςt1t3∣∣∣max
t2,t3

∣∣∣∑
ij

hijm̃it2m̃jt3

∣∣∣/Ds. (21)

Note here that∣∣∣∑
ij

hijm̃it2m̃jt3

∣∣∣ ≤ ∣∣∣∑
ij

hijm̃it2m̃jt3 −
∑
i

hiiE
(
m̃it2m̃it3 |zi

)∣∣∣+
∣∣∣∑

i

hiiE
(
m̃it2m̃it3 |zi

)∣∣∣,
where the RHS1 divided by Ds is Op(1), because∑

i

∑
j<i

(
hijm̃it2m̃jt3 + hjim̃jt2m̃it3

)
+
∑
i

hii

(
m̃it2m̃it3 − E

(
m̃it2m̃it3 |zi

))
is the sum of martingale difference sequences and theorem 24.3 of Davidson (1994) applies. There-
fore, in view of lemma A6, it suffices to show that

∣∣∣∑i hiiE
(
m̃it1m̃it2 |zi

)∣∣∣/Ds = Op(n/k). This is
trivially true for s = 2, because hii = wii = 0. When s = 1, recall that D1 is bounded below by a
nonzero constant by lemma A1 and the conclusion follows from∑

i

E
(
aiiE

(
m̃it1m̃it2 |zi

))
≤ Cwk−1

∑
ij

E
(
wjiE

(
m̃it1m̃it2 |zi

))
= Op(n/k). ���

B Proof of theorem 2

Following Robinson (1987), let σ̃2
j =

∑
twjtσ

2
t .

Lemma B1 maxi |σ̂2
i − σ̃2

i | = Op(n1/p∗k−1/2).

Proof: Follows from Robinson (1987), lemma 9. ���

Lemma B2 limn→∞ P [mini σ̂2
i < Cs/2] = 0.

Proof: Follows from Robinson (1987), lemma 10. ���

Lemma B3
∑

ij wijm̃im̃j

(
1/(σ̂iσ̂j)− 1/(σ̃iσ̃j)

)
= op(

√
n/k).
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B Proof of theorem 2

Proof: First,∑
ij

wijm̃im̃j

( 1
σ̂iσ̂j

− 1
σ̃iσ̃j

)
=
∑
ij

wijm̃im̃j

( 1
σ̂i
− 1
σ̃i

)( 1
σ̂j
− 1
σ̃j

)
+
∑
ij

wijm̃im̃j

( 1
σ̂i
− 1
σ̃i

) 1
σ̃j

+
∑
ij

wijm̃im̃j

( 1
σ̂j
− 1
σ̃j

) 1
σ̃i
. (22)

RHS3 is harder than RHS1 and similar to RHS2, so we only show that RHS3 is op(
√
n/k). Note

that 1/σ = 1/
√
σ2, such that by the mean value theorem,∣∣∣∣∣ 1
σ̂j
− 1
σ̃j

+
1

2σ̃3
j

(σ̂2
j − σ̃2

j )−
3

8σ̃5
j

(σ̂2
j − σ̃2

j )
2

∣∣∣∣∣ ≤ 5
16 min(σ̃7

j , σ̂
7
j )
|σ̂2
j − σ̃2

j |3, (23)

Now, by lemmas B1 and B2, maxj |σ̂2
j−σ̃2

j |3/min(σ̃7
j , σ̂

7
j ) = Op(n3/p∗k−3/2) and E

∣∣m̃j
∑

iwijm̃i/σ̃i
∣∣ ≤√

nEm̃2
jE(w2

ijm̃
2
i /σ̃

2
i ) = O(1/

√
k), such that

∑
j

∣∣∣m̃j(σ̂2
j − σ̃2

j )
3

min(σ̃7
j , σ̂

7
j )

∑
i

wij
m̃i

σ̃i

∣∣∣ ≤ max
j

|σ̂2
j − σ̃2

j |3

min(σ̃7
j , σ̂

7
j )

∑
j

∣∣∣m̃j

∑
i

wij
m̃i

σ̃i

∣∣∣ = Op(n3/p∗+1k−2) = op(
√
n/k).

Further,

E

∑
ij

wij
m̃im̃j(σ̂2

j − σ̃2
j )

2σ̃iσ̃3
j

2

= E

∑
ijt

wijwjt
m̃im̃j(m̃2

t − σ2
t )

2σ̃iσ̃3
j

2

=
∑
ijt

E

(
w2
ijw

2
jt

(m̃im̃j(m̃2
t − σ2

t )
2σ̃iσ̃3

j

)2
)

+ similar terms = O(n3/k4) = o(n/k). (24)

Finally,
∑

ij wijm̃im̃j(σ̂2
j − σ̃2

j )
2/(σ̃iσ̃5

j ) can be dealt with an argument similar to the one used in
(24). ���

Lemma B4
∑

ij wijm̃im̃j

(
1/(σ̃iσ̃j)− 1/(σiσj)

)
= op(

√
n/k).

Proof: Square and take expectation to obtain∑
ij

E
(
(w2

ij + wijwji)m̃2
i m̃

2
j (σ̃
−1
i σ̃−1

j − σ
−1
i σ−1

j )2
)
≤ (C/k)

∑
ij

E
(
wijm̃

2
i m̃

2
j (σ̃iσ̃j − σiσj)2

)
,

where we use the fact that both σ̃i and σi are bounded away from zero. Now, using assumption B,
(σ̃iσ̃j − σiσj)2 ≤ |σ̃2

i σ̃
2
j − σ2

i σ
2
j | ≤ C

(
|σ̃2
i − σ2

i |+ |σ̃2
j − σ2

j |
)
. Now, by the Schwarz inequality,

k−1
∑
ij

E
(
wijm̃

2
i m̃

2
j |σ̃2

i − σ2
i |
)
≤ k−1

√∑
i

E
(∑
j

wijm̃2
jm̃

2
i

)2∑
i

E|σ̃2
i − σ2

i | = o(n/k). ���

Proof of Theorem 2: From lemmas B3 and B4 it follows that∑
ij

wij
m̃i

σ̂i

m̃j

σ̂j
−
∑
ij

wij
m̃i

σi

m̃j

σj
= op(

√
n/k), (25)

which is sufficient for the stated result. ���
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C Proof of Theorem 3

Let µi(θ) = E
(
mi(θ)|zi

)
= λµ∗i (θ). Our statistic at θ is given by Ts(θ) = Ns(θ)/Ds, where

Ns(θ) =
d∑
t=1

∑
ij

hijmit(θ)mjt(θ)− d
∑
i

hii.

We will write ui(θ) for mi(θ)− µi(θ) in the following discussion.

Lemma C1 Let f(yi, θ) ∈ F . Then, supθ∈Θ ‖n−1
∑

i f(yi, θ)− E
(
f(yi, θ)

)
‖ = op(1).

Proof: Without loss of generality, we will assume that E(fi(θ)) = 0, where fi(θ) = f(yi, θ).
Choose an arbitrary η > 0, and let δ > 0 satisfy (8). Since Θ is compact, it can be divided up into
δ-balls Θ1, · · · ,ΘKδ for Kδ <∞. Letting θκ be the center of Θκ, we have

sup
θ∈Θ
‖n−1

∑
i

fi(θ)‖ ≤ max
κ=1,··· ,Kδ

n−1
∑
i

sup
θ∈Θκ

‖fi(θ)− fi(θκ)‖+ max
κ=1,··· ,Kδ

‖n−1
∑
i

fi(θκ)‖

≤ η +
Kδ∑
κ=1

‖n−1
∑
i

fi(θκ)‖

with probability greater than 1− η. Since Kδ is finite, and η > 0 is arbitrariy, applying the law of
large numbers completes the proof. ���

Lemma C2 Let f(zi, θ) be a function of zi and θ such that f ∈ F and E(supθ∈Θ |f(zi, θ)|pf ) <∞
for some 0 < pf <∞. Then, for any q ≥ 1, supθ

∑
ij wij‖f(zi, θ)− f(zj , θ)‖q = op(n).

Proof: Without loss of generality, we assume that f is real-valued. Choose an arbitrary η > 0,
and let δ > 0 satisfy (8). Since Θ is compact, it can be divided up into δ-balls Θ1, · · · ,ΘKδ for
Kδ < ∞. Now, let ∆jκ(θ) = | supθ∈Θκ f(zj , θ) − infθ∈Θκ f(zj , θ)|q. Letting fj(θ) = f(zj , θ) and
suppressing θ, we have

sup
θ∈Θ

n−1
∑
ij

wij |fi − fj |q ≤ max
κ=1,2,··· ,Kδ

n−1
∑
ij

wij sup
θ∈Θκ

|fi − fj |q

≤ C
(

max
κ=1,2,··· ,Kδ

n−1
∑
i

∆iκ+ max
κ=1,2,··· ,Kδ

n−1
∑
ij

wij∆jκ+ max
κ=1,2,··· ,Kδ

n−1
∑
ij

wij | inf
θ∈Θκ

fi− inf
θ∈Θκ

fj |q
)
.

Here, the RHS3 is op(1) by Stone’s lemma. Further, the RHS2 is bounded by

max
κ=1,2,··· ,Kδ

n−1
∑
i

∆iκ +
Kδ∑
κ=1

n−1
∑
ij

wij |∆jκ −∆iκ| = max
κ=1,2,··· ,Kδ

n−1
∑
i

∆iκ + op(1)

again by Stone. Therefore, it suffices to show that the RHS1 is negligible. Note that

max
κ=1,2,··· ,Kδ

n−1
∑
i

∆iκ ≤ max
κ=1,2,··· ,Kδ

E(∆iκ)+
Kδ∑
κ=1

|n−1
∑
i

∆iκ−E(∆iκ)| = max
κ=1,2,··· ,Kδ

E(∆iκ)+op(1),
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where

max
κ=1,2,··· ,Kδ

E(∆iκ) ≤ η + max
κ=1,2,··· ,Kδ

E(∆iκI(∆iκ > η))

≤ η+ max
κ=1,2,··· ,Kδ

E(∆pf
iκ )1/pf max

κ=1,2,··· ,Kδ
P (∆iκ > η)(pf−1)/pf ≤ η+

(
2E(sup

θ∈Θ
|fi|pf )

)1/pf (η)(pf−1)/(pf q).

Since η is arbitrary, the lemma is proved. ���

Lemma C3 (i) supθ∈Θ

∑
ij wijuit(θ)ujt(θ) = op(n) and (ii) supθ∈Θ

∑
i

(∑
j wijujt(θ)

)2 = op(n)
for each t = 1, 2, · · · , d.

Proof: Since ui ∈ F , for any η > 0, we can choose δ > 0 as (8). Divide Θ up into δ-balls
Θ1, · · · ,ΘKδ for Kδ <∞, and let θκ be the center of Θκ. Note then

sup
θ∈Θκ

|ujt(θ)− ujt(θκ)| ≤ η and sup
θ∈Θκ

|ujt(θ)− ujt(θκ)| sup
θ∈Θκ

|uit(θ)− uit(θκ)| ≤ η2

with probability greater than 1− η. Therefore,

| sup
θ∈Θ

n−1
∑
ij

wijuit(θ)ujt(θ)| ≤ η2 + η max
κ=1,··· ,Kδ

n−1
∑
ij

wij |ujt(θκ)|

+ η max
κ=1,··· ,Kδ

n−1
∑
i

|uit(θκ)|+ max
κ=1,··· ,Kδ

|n−1
∑
ij

wijuit(θκ)ujt(θκ)|

with probability greater than 1− η. Here, the RHS2 is Op(η), because

max
κ=1,··· ,Kδ

n−1
∑
ij

wij |ujt(θκ)| ≤ n−1
∑
ij

wij(
Kδ∑
κ=1

|ujt(θκ)|)

= n−1
∑
i

E(
Kδ∑
κ=1

|uit(θκ)||zi) + op(1) = E(
Kδ∑
κ=1

|uit(θκ)|) + op(1) = O(1).

The RHS3 is also Op(η) by the law of large numbers. Lastly, squaring and taking expectation of
the RHS4 shows that it is Op(n−1/2k−1/2) = op(1). Taking η → 0 proves the first statement of the
lemma. The second statement of the lemma follows similarly and it will be omitted. ���

Lemma C4 supθ∈Θ

∑
i(µ̂it(θ)− µit(θ))2 = op(n) for each t = 1, 2, · · · , d.

Proof: Since (µ̂it(θ)− µit(θ))2 ≤ 2
((∑

j wijujt(θ)
)2 +

(∑
j wij(µjt(θ)− µit(θ))

)2), we know that

sup
θ∈Θ

∑
i

(µ̂it(θ)− µit(θ))2 ≤ 2 sup
θ∈Θ

∑
i

(∑
j

wijujt(θ)
)2

+ 2 sup
θ∈Θ

∑
i

(∑
j

wij
(
µjt(θ)− µit(θ)

))2

Jensen
≤ 2 sup

θ∈Θ

∑
i

(∑
j

wijujt(θ)
)2

︸ ︷︷ ︸
C3
=op(n)

+2 sup
θ∈Θ

∑
ij

wij
(
µjt(θ)− µit(θ)

)2
︸ ︷︷ ︸

C2
=op(nλ2)

. ���
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Lemma C5 (i) supθ∈Θ |
∑

i uit(θ)(µ̂it(θ)− µit(θ))| = op(n) and
(ii) supθ∈Θ |

∑
i µit(θ)(µ̂it(θ)− µit(θ))| = op(nλ) for each t = 1, 2, · · · , d.

Proof: Note that

sup
θ∈Θ
|
∑
i

uit(θ)(µ̂it(θ)− µit(θ))|
Schwarz
≤

(
sup
θ∈Θ

∑
i

uit(θ)2
)1/2(sup

θ∈Θ

∑
i

(µ̂it(θ)− µit(θ))2
)1/2

C1, C4
=

√
Op(n)(op(n) + op(nλ2)).

The second statement is similar and it will be omitted. ���

Lemma C6 0 < C1k
2/n2 ≤ D−2

1 ≤ O(1) and 0 < C2k/n ≤ D−2
2 ≤ C3k/n.

Proof: Note that

D2
1 = 2d

∑
i 6=j

a2
ij ≤ 2d

∑
ijts

wtiwtjwsiwsj ≤ Ck−1
∑
its

wtiwsi ≤ Cn2/k2,

D2
2 = d

∑
ij

wij(wij + wji) ≤ Ck−1
∑
ij

wij = Cn/k.

Therefore, the conclusion follows from lemma A1. ���

Lemma C7 supθ ||V̂ (θ)−1 − V (θ)−1|| = op(1).

Proof: We will prove the uniform convergence for each element. For t, s ∈ {1, 2, · · · , d}, consider
the t–s element ς̂ts(θ) of V̂ (θ); suppressing the argument θ,

nς̂ts =
∑
i

ũitũis +
∑
i

ũit(µ̃is − ˆ̃µis) +
∑
i

ũis(µ̃it − ˆ̃µit) +
∑
i

(µ̃it − ˆ̃µit)(µ̃is − ˆ̃µis), (26)

where ˆ̃µit =
∑

j wijm̃jt and ũit = m̃it − µ̃it. Applying the Schwarz inequality and lemmas C1 and
C4 shows that the RHS2–RHS4 are op(n) uniformly in θ. Since

∣∣∑
i ũitũis − nE

(
ũitũis

)∣∣ = op(n)
uniformly in θ by lemma C1, equation (26) shows that

∣∣ς̂ts−E(ũitũis)∣∣ = op(1) uniformly in θ and
hence supθ ||V̂ (θ)− V (θ)|| = op(1). Since P−1 −Q−1 = P−1(Q− P )Q−1 for matrices P and Q, we
have an inequality ||P−1−Q−1|| ≤

(
||P−1−Q−1||+ ||Q−1||

)
||Q−1||||Q−P ||. Using this inequality

and assumption D shows that

sup
θ
||V̂ (θ)−1 − V (θ)−1|| ≤

(
sup
θ
||V̂ (θ)−1 − V (θ)−1||+O(1)

)
O(1)op(1). ���

Proof of Theorem 3: Let

N t1t2
s (θ) =

∑
ij

hijmit1(θ)mjt2(θ)−
∑
i

hii, Ñ t1t2
s (θ) =

∑
ij

hijm̃it1(θ)m̃jt2(θ)−
∑
i

hii
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and let N̂s(θ) be similarly defined; note that T̂s(θ) =
∑d

t=1 N̂
tt
s (θ)/Ds. Since s = 1 and s = 2 are

similar, we only consider s = 1 (i.e. hij = aij) here. Note first that

Ñ t1t2
1 (θ) =

∑
ij

aijm̃it1(θ)mit2(θ)−
∑
i

aii =
∑
i

ˆ̃µit1(θ)ˆ̃µit2(θ)−
∑
ij

w2
ij

Schwarz,C1,C4
=

∑
i

µ̃it1(θ)µ̃it2(θ) + op(n)−
∑
ij

w2
ij

C1= nλ2E
(
µ̃∗it1(θ)µ̃∗it2(θ)

)
+ op(n), (27)

uniformly in θ. By the same reasoning, we also have

N t1t2
1 (θ) = nλ2E

(
µ∗it1(θ)µ∗it2(θ)

)
+ op(n) (28)

uniformly in θ. Now, letting ς̂t1t2(θ) and ςt1t2(θ) be the t1–t2 elements of V̂ −1/2(θ) and V −1/2(θ),
respectively and suppressing the argument θ, we note that

sup
θ
|N̂ tt

1 −N tt
1 | ≤ d2 max

s1,s2=1,··· ,d
sup
θ

∣∣ς̂ts1 ς̂ts2 − ςts1ςts2∣∣( max
s1,s2=1,··· ,d

sup
θ

∣∣Ñ s1s2
1

∣∣+
∑
ij

w2
ij

)
C7, (27)

= op(1)(Op(n) +Op(n/k)) = op(n). (29)

It then follows that

T̂1
(28), (29)

= inf
θ

(
nλ2

d∑
t=1

E
(
µ∗2it (θ)

)
+ op(n)

)
/D1

C6
≥ kλ2

d∑
t=1

CE
(
inf
θ
µ∗2it (θ)

)
+ op(k) → ∞

at the rate of k, because λ is fixed and E
(
infθ µ̃∗

2

it (θ)
)
> 0 under H1. In view of lemma C6, we also

note that T̂2 diverges at the rate of
√
nk when λ is fixed. ���

D Proof of Theorem 4

Lemma D1 supθ maxi |σ̂2
i (θ)− σ̃2

i (θ)| = op(1).

Proof: Choose an arbitrary η > 0 and let δ > 0 satisfy (8). Since Θ is compact, it can be divided
up into δ-balls Θ1, · · · ,ΘKδ for Kδ <∞. Let θκ be the center of Θκ. Then

sup
θ

max
i
|σ̂2
i (θ)− σ̃2

i (θ)| ≤ η + max
κ=1,2,··· ,Kδ

max
i
|σ̂2
i (θκ)− σ̃2

i (θκ)|, (30)

with probability greater than 1 − η. By lemma B1 RHS2 in (30) is op(1). Now let η ↓ 0 to make
RHS1 disappear, also. ���

Lemma D2 supθ
(
mini σ̂2

i (θ)
)−1 = Op(1).

Proof: Note that 0 < C ≤ mini σ̃2
i (θ) ≤ supθ maxi |σ̃2

i (θ) − σ̂2
i (θ)| + mini σ̂2

i (θ). Therefore, the
result follows from lemma D1. ���

Lemma D3 supθ
∣∣∑

ij wijm̃i(θ)m̃j(θ)
(
σ̂−1
i (θ)σ̂−1

j (θ)− σ̃−1
i (θ)σ̃−1

j (θ)
)∣∣ = op(n).
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Proof: Omitting the θ–argument, note that by repeated use of the Schwarz inequality,

sup
θ

∣∣∣∑
ij

wijm̃im̃j

( 1
σ̂iσ̂j

− 1
σ̃iσ̃j

)∣∣∣ ≤ max
i,j

sup
θ

∣∣∣ 1
σ̂iσ̂j

− 1
σ̃iσ̃j

∣∣∣√sup
θ

∑
ij

wijm̃2
j

√
sup
θ

∑
i

m̃2
i . (31)

The first RHS factor in (31) is op(1) by lemmas D1 and D2. The remaining two RHS factors are
Op(
√
n) by lemmas C2 and C1, respectively, using the assumption that m̃2

i ∈ F . ���

Lemma D4 supθ
∣∣∑

ij wijm̃i(θ)m̃j(θ)
(
σ̃−1
i (θ)σ̃−1

j (θ)− σ−1
i (θ)σ−1

j (θ)
)∣∣ = op(n).

Proof: Noting that σ̃i, σi are uniformly bounded and uniformly bounded away from zero and that
|σ̃i − σi|2 ≤ |σ̃2

i − σ2
i |, it follows that (omitting the θ–argument)

sup
θ

∣∣∣∑
ij

wijm̃im̃j

( 1
σ̃iσ̃j

− 1
σiσj

)∣∣∣ ≤ C sup
θ

∑
ij

wij |m̃im̃j |
(√
|σ̃2
i − σ2

i |+
√
|σ̃2
j − σ2

j |
)
. (32)

Now, by repeated application of the Schwarz inequality,

sup
θ

∑
ij

wij |m̃im̃j |
√
|σ̃2
i − σ2

i | ≤ 4

√
sup
θ

∑
i

m̃4
i 4

√
sup
θ

∑
i

|σ̃2
i − σ2

i |2
√

sup
θ

∑
ij

wijm̃2
j . (33)

The first and third RHS factors in (33) are Op(n1/4) by lemmas C1 and C2, respectively. The
middle RHS factor in (33) is op(

√
n) since supθ

∑
i |σ̃2

i − σ2
i |2 ≤ supθ

∑
itwit|σ2

t − σ2
i |2, such that

lemma C2 again applies. The argument for the supθ
∑

ij wij |m̃im̃j |
√
|σ̃2
j − σ2

j | portion of (32) is
similar to that of (33). ���

Proof of Theorem 4: Since NH
2 (θ) =

∑
ij wijm̃i(θ)m̃j(θ) 1

σi(θ)
1

σj(θ)
= nλ2E

(
µ∗2i (θ)

)
+ op(n)

uniformly in θ,

T̂H2
D4= inf

θ

(
nλ2E

(
µi(θ)2

)
+ op(n)

)
/D2 ≥

√
nkλ2CE

(
inf
θ
µ̃∗2i (θ)

)
+ op(

√
nk)→∞. ���

E Proof of Theorem 5

Let ui(θ) = mi(θ)−µi(θ) = mi(θ)−µoi (θ)−δnqi. In this subsection, we use the following expansion:

Ns(θ) = Ns(θ0) +Nθs(θ0)(θ − θ0) +
1
2

(θ − θ0)′Nθθs(θ0)(θ − θ0) +Op(n||θ − θ0||3), (34)

where

Ns(θ0) =
d∑
t=1

∑
ij

hijuit(θ0)ujt(θ0)− d
∑
i

hii + δ2
n

d∑
t=1

∑
ij

hijqitqjt +Op(
√
nδn) (35)

Nθs(θ0) = δn

d∑
t=1

∑
ij

hij(mθit(θ0)′qjt + qitmθjt(θ0)′) +Op(
√
n) (36)

Nθθs(θ0) =
d∑
t=1

∑
ij

hij(mθit(θ0)mθjt(θ0)′ +mθjt(θ0)mθit(θ0)′) +Op(nδn). (37)

We start from showing that θn converges to θ0 under the hypothesis (9).
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Lemma E1 Under (9), we have θn − θ0 = −δnE(Γ′iΓi)
−1E(Γ′iqi) + o(δn).

Proof: First, we show that θn → θ0. For this, it suffices to show that E(µi(θ)′µi(θ)) uniformly
converges to E(µoi (θ)

′µoi (θ)) under (9). Note that

sup
θ
|E(µi(θ)′µi(θ)− µoi (θ)′µoi (θ))| ≤ 2δn sup

θ
E(||qi||||µoi (θ)||) + δ2

nE(q′iqi)

≤ 2δnE(q′iqi)
1/2E

(
sup
θ
||µoi (θ)||2

)1/2 + δ2
nE(q′iqi)→ 0.

Since we have established the convergence of θn to θ0, it now suffices to consider neighborhood
of θ0. Since θ0 is in the interior of Θ, θn will satisfy the first order condition for sufficiently large
n. Letting Γi(θ) = µi(θ)

θ′ = µoi (θ)
θ′ ,

0 = E(Γi(θn)′µi(θn)) = E
(
Γi(θn)′Γi

)
(θn − θ0) + δnE(Γi(θn)′qi) + o(||θn − θ0||),

which implies that θn − θ0 = −δn
(
E(Γ′iΓi) + o(1)

)−1(
E(Γ′iqi) + o(1)

)
+ o(||θn − θ0||). ���

Lemma E2 Nθs(θ0) = 2nδnE(q′iΓi) + op(nδn) under the hypothesis (9).

Proof: Since s = 1 and s = 2 are similar, we only consider s = 1. Suppressing θ0, note first that∑
ij aij(mθitqjt +mθjtqit) = 2

∑
ijr wriwrjmθitqjt = 2nE

(
mθrtqrt

)
+ op(n), because

|
∑
ijr

wriwrjmθitqjt −
∑
r

mθrtqrt|

≤
∑
ijr

wriwrj |mθit −mθrt||qjt − qrt|+
∑
ir

wri|mθit −mθrt||qrt|+
∑
jr

wrj |qjt − qrt||mθrt|

Schwarz, Stone
=

√
op(n)op(n) + op(n) + op(n) = op(n).

It then follows that Nθ1(θ0) = 2nδnE(
∑d

t=1 Γ′rtqrt) + op(nδn) = 2nδnE(q′rΓr) + op(nδn). ���

Lemma E3 Nθθs(θ0) = 2nE(Γ′iΓi) + op(n) under the hypothesis (9).

Proof: It is similar to the proof of lemma E2, and it will be omitted. ���

Lemma E4 For any C > 0, sup||θ−θ0||≤Cδn ||d V̂ (θ)−1 − dV (θ)−1|| = op(δn).

Proof: Similarly to the proof of lemma C7, it is easy to show that the derivative of each element
of V̂ (θ) uniformly converges to the derivative of each element of V (θ). Therefore, it easily follows
that sup||θ−θ0||≤Cδn ||d V̂ (θ)− dV (θ)|| = op(δn). We will show that the same order obtains for the
differentials of the inverses. Suppressing the argument θ, note that

d V̂ −1 − dV −1 = V̂ −1 d V̂ V̂ −1 − V −1 dV V −1

= V̂ −1
(
d V̂ − dV

)
V̂ −1 −

(
V̂ −1 ⊗ V̂ −1 − V −1 ⊗ V −1

)
vec(dV ).

Therefore,

||d V̂ −1 − dV −1|| ≤
(
||V̂ −1 − V −1||+ ||V −1||

)2||d V̂ − dV ||+ ||dV ||||V̂ −1 ⊗ V̂ −1 − V −1 ⊗ V −1||.

Then, use the uniform convergence of V̂ −1 and d V̂ together with the fact that sup||θ−θ0||≤Cδn ||dV (θ)|| =
O(δn). ���
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Lemma E5 For any constant C > 0, (i) sup||θ−θ0||≤Cδn |N̂s(θ)−Ns(θ)| = op(nδ2
n),

(ii) sup||θ−θ0||≤Cδn ||N̂θs(θ)−Nθs(θ)|| = op(nδn) and (iii) sup||θ−θ0||≤Cδn ||N̂θθs(θ)−Nθθs(θ)|| = op(n)
under the hypothesis (9).

Proof: Note first that under (9), we have µ̃i(θ) = µ̃oi (θ) + δnV
1/2(θ)qi, where µ̃oi (θ0) = 0. For

r1, r2 = 1, 2, · · · , d, consider

Ñ r1r2
s (θ) =

∑
ij

hijm̃ir1(θ)m̃jr2(θ)−
∑
i

hii.

Let q̃i(θ0) = V (θ0)1/2qi and ũi(θ0) = m̃i(θ0)− µ̃i(θ0). Suppressing θ0, we note that

Ñ r1r2
s =

∑
ij

hij ũir1 ũjr2 −
∑
i

hii︸ ︷︷ ︸
=Op(
√
n/k)=Op(nδ2n)

+
∑
ij

hij ũir1 q̃jr2δn︸ ︷︷ ︸
=Op(

√
nδn)=op(nδ2n)

+
∑
ij

hij ũjr1 q̃ir2δn︸ ︷︷ ︸
=op(n3/4δn/k1/4)=op(nδ2n)

+
∑
ij

hij q̃ir1 q̃jr2δ
2
n︸ ︷︷ ︸

=Op(nδ2n)

,

(38)

Ñ r1r2
sθ =

∑
ij

hijm̃θir1 ũjr2 +
∑
ij

hij ũir1m̃θjr2︸ ︷︷ ︸
=op(n3/4/k1/4)=op(nδn)

+
∑
ij

hijm̃θir1 q̃jr2δn +
∑
ij

hij q̃ir1m̃θjr2δn︸ ︷︷ ︸
=Op(nδn)

, (39)

using lemma B4 of Jun and Pinkse (2007), and

sup
θ
||Ñ r1r2

sθθ (θ)|| ≤ sup
θ
||
∑
ij

hijm̃θθir1(θ)m̃jr2(θ)||+ sup
θ
||
∑
ij

hijm̃ir1(θ)m̃θθjr2(θ)||

+ sup
θ
||
∑
ij

hij(m̃θir1(θ)mθjr2(θ)′ + m̃θjr2(θ)m̃θir1(θ)′)|| C1,C4
= Op(n). (40)

Therefore,

sup
||θ−θ0||≤Cδn

|Ñ r1r2
s (θ)| ≤ |Ñ r1r2

s (θ0)|+ C||Ñ r1r2
sθ (θ0)||δn + sup

θ
||Ñ r1r2

sθθ (θ)||δ2
nC

2/2 = Op(nδ2
n), (41)

sup
||θ−θ0||≤Cδn

||Ñ r1r2
θs (θ)|| ≤ ||Ñ r1r2

θs (θ0)||+ C sup
θ
||Ñ r1r2

sθθ (θ)||δn = Op(nδn). (42)

Now, let ς̂t1t2(θ) and ςt1t2(θ) be the t1–t2 element of V̂ −1/2(θ) and V −1/2(θ), respectively. Then,

sup
||θ−θ0||≤Cδn

|N̂s(θ)−Ns(θ)|

≤ d3 max
t1,t2,t3

sup
||θ−θ0||≤Cδn

|ς̂t1t2(θ)ς̂t1t3(θ)− ςt1t2(θ)ςt1t3(θ)| max
t2,t3=1

(
sup

||θ−θ0||≤Cδn
|Ñ t2t3

s (θ)|+
∑
i

hii
)

A6,C7,E4,(41)
=

(
op(k/n) + op(δn)

)(
Op(nδ2

n) +Op(n/k)
)

= op(nδ2
n).

The other cases of (ii) and (iii) similarly follow from equations (40), (41), (42), and uniform con-
vergence of V̂ (θ) and their derivatives. ���
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Lemma E6 Let θ̂s be the minimizer of T̂s(θ). Then, θ̂s− θn = op(δn) under the hypothesis (9). In
particular, θ̂s − θ0 = −δnE(Γ′iΓi)

−1E(Γ′iqi) + op(δn).

Proof: Since N̂s(θ) = Ns(θ) + op(n) and Ns(θ) = nE
(
||µi(θ)||2

)
+ op(n) uniformly in θ, it is clear

that θ̂s − θn = op(1). Therefore, we only focus on the rate of θ̂s − θn. Since θ0 is in the interior
of Θ, the first order condition N̂θs(θ̂s) = 0 is available for sufficiently large n. Expanding the first
order condition yields

N̂θs(θn) + N̂θθs(θ̄s)(θ̂s − θn) = 0,

where θ̄s is between θ̂s and θn. Here, it can be easily shown that N̂θθs(θ) = Nθθs(θ)+op(n) uniformly
in θ. Also, following the proof of lemma C4, we note that Nθθs(θ) = 2n

∑d
t=1E

(
µθθit(θ)µit(θ) +

µθit(θ)′µθit(θ)
)

+ op(n). Therefore, N̂θθs(θ̄s) = 2n
∑d

t=1E
(
µθit(θn)′µθit(θn)

)
+ op(n), and hence it

suffices to show that N̂θs(θn) = op(nδn) for the result. Suppressing θn, note that

N̂θs
E1,E5

= Nθs + op(nδn) =
d∑
t=1

∑
ij

hijmθitmjt +
d∑
t=1

∑
ij

hijmθjtmit + op(nδn).

Since the RHS1 and the RHS2 are similar, we will only consider the RHS1. Letting uj = mj − µj ,
write

d∑
t=1

∑
ij

hijmθitmjt =
d∑
t=1

∑
ij

hijmθitujt +
d∑
t=1

∑
ij

hijmθit(µjt − µit) +
d∑
t=1

∑
ij

hijmθitµit. (43)

The RHS3 of (43) can be easily shown to be op(nδn), because
∑d

t=1mθit(θn)µit(θn) is an independent
mean zero array. For the RHS2 of (43), expand µit(θn)− µjt(θn) around θ0, and we obtain

|
∑
ij

hijmθit

(
µjt − µit

)
| ≤

∑
ij

hij |mθit||qjt − qit|δn +
∑
ij

hij |mθit|||µθjt(θ0)− µθit(θ0)||||θn − θ0||

+
∑
ij

hij |mθit|
(
sup
θ
||µθθjt(θ)||+ sup

θ
||µθθit(θ)||

)
||θn − θ0||2,

where the last term is Op(nδ2
n) = op(nδn) by lemma E1. The first two terms are similar and we

only consider the first one. Also, when hij = wij , it is clearly op(n) by Stone’s lemma and we only
consider hij = aij . In this case,∑

ij

aij |mθit||qjt − qit| ≤
∑
jr

wrj
(∑

i

wri|mθit|
)
|qjt − qrt|+

∑
ir

wri|mθit||qrt − qit|,

which is op(n) by lemma B1 of Jun and Pinkse (2007). Lastly, consider the RHS1 of (43). Note

that E
((∑

ij hijmθitujt
)2) = E

(∑
ijr hijhrjmθitmθrtu

2
jt

)
. When hij = wij , it follows from lemma

B4 of Jun and Pinkse (2007) that E
(∑

ijr wijwrjmθitmθrtu
2
jt

)
= o(n3/2k−1/2), which implies that

the RHS1 of (43) is op(n3/4k−1/4) = op(nδn). When hij = aij , note that

E
(∑
ijr

aijarjmθitmθrtu
2
jt

)
=
∑
jr2r3

E
(
wr2jwr3ju

2
it

(∑
i

wr2imθit

)(∑
r1

wr3r1mθr1t

))
= o(n3/2k−1/2),

where the last equality is due to lemma B4 of Jun and Pinkse (2007). Applying lemma E1 completes
the proof. ���
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Lemma E7 Suppressing θ0,

N̂s(θ̂s) =
∑
ij

hiju
′
iuj − d

∑
i

hii + nδ2
n

(
E(q′iqi)− E(q′iΓi)E(Γ′iΓi)

−1E(Γ′iqi)
)

+ op(nδ2
n)

under the hypothesis (9).

Proof: From equation (34), lemmas E2, E3, and E5, it follows that

N̂s(θ̂s) = Ns(θ̂s) + op(nδ2
n) = Ns(θ0)− nδ2

nE(q′iΓi)E(Γ′iΓi)
−1E(Γ′iqi) + op(nδ2

n).

Therefore, in view of equation (35), we only need to show that δ2
n

∑
ij hijq

′
iqj = nδ2

nE(q′iqi)+op(nδ2
n).

Since the case of s = 1 (i.e. hij = aij) is similar, we only consider s = 2 (i.e. hij = wij); see also the
proof of lemma E2. Noting that |

∑
ij wijqitqjt −

∑
i q

2
it| ≤

∑
ij wij |qit||qjt − qit| = op(n), we know

that

δ2
n

d∑
t=1

∑
ij

wijqitqjt = δ2
n

d∑
t=1

∑
i

q2
it + op(nδ2

n) = nδ2
nE(

d∑
t=1

q2
it) + op(nδ2

n). ���

Proof of Theorem 5: Let D2
1 = 2d

∑
j 6=i a

2
ij and D2

2 = d
∑

ij wij(wij + wji). Then, they are
bounded away from 0, and they are Op(n/k); see lemmas A1 and C6. Since

√
nkδ2

n = O(1) by the
setup, lemma E7 shows that

T̂s −

√
nkδ2

n

(
E(q′iqi)− E(q′iΓi)E(Γ′iΓi)

−1E(Γ′iqi)
)

√
k/nDs

=

∑d
t=1

∑
ij hijuitujt − d

∑
i hii

Ds
+ op(1),

where we suppressed θ0. Therefore, we only need to show that
(∑d

t=1

∑
ij hijuitujt − d

∑
i hii

)
/Ds

has a normal distribution under (9). But, it follows from the same proofs of section A. ���

F Proof of Theorem 6

Lemma F1 P (Sn ≤ k/n, S̃n > k/n) = o(k/n).

Proof: Follows from lemmas C7 and C11 of Jun and Pinkse (2008). ���

Lemma F2 P (z1 ∈ N2, z2 ∈ N1, z3 ∈ N4, z4 ∈ N3) = P (z1 ∈ N2, z2 ∈ N1)P (z3 ∈ N4, z4 ∈
N3) + o(k2/n2).

Proof: Follows from lemma C12 of Jun and Pinkse (2008). ���

Proof of Theorem 6: It suffices to prove that (k/n)D2
2 = (k/n)

∑
ij wij(wij + wji) = 1 +

(k/n)
∑

ij wijwji
p→ 2. Let z and z̃ be two independent copies of zi. Let Sn = Sn(z, z̃) =

n−1
∑n

i=1 I
(
||zi − z|| ≤ ||z̃ − z||

)
and S̃n = Sn(z̃, z). Note that by lemma F1,

E(w12w21) = k−2P (Sn ≤ k/n, S̃n ≤ k/n)

= k−2P (Sn ≤ k/n)− k−2P (Sn ≤ k/n, S̃n > k/n) = 1/nk − o(1/nk). (44)
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It thus suffices to show that Var
(∑

ij wijwji
)

= o(n2/k2). Finally, since by lemma F2,
Cov(w12w21, w34w43) = o(1/n2k2), it follows that

Var
(∑
ij

wijwji

)
=
∑
ijts

Cov(wijwji, wtswst)

= n2(n− 2)2 Cov(w12w21, w34w43) + 4n2(n− 2) Cov(w12, w21, w13w31) + 2n2 Var(w12w21)

= o(n2/k2) +O(n/k2) +O(n/k) = o(n2/k2). ���

G Proof of Theorem 7

Let ℵj = ||z − zj ||dz and let ℵ(j) be the jth (smallest) order statistic. Let Dn = ℵ(k) and consider a
sequence τn such that k/n ≺ τdzn ≺ hdzn .

Lemma G1 P (Dn > τdzn ) = o(1).

By the mean value theorem, F (s) ≥ cs for c = infs f(s) > 0. Since Dn is the kth order statistic, we
can write by the Markov inequality,

τdzP (Dn > τdzn ) ≤ E(Dn) =
∫

n!
(k − 1)!(n− k)!

F (s)k−1
(
1− F (s)

)n−k
f(s)sds

≤ c−1

∫
n!

(k − 1)!(n− k)!
F (s)k

(
1− F (s)

)n−k
f(s)ds

= c−1 n!
(k − 1)!(n− k)!

∫ 1

0
yk(1− y)n−kdy Beta= c−1 n!

(k − 1)!(n− k)!
k!(n− k)!
(n+ 1)!

= c−1 k

n+ 1
,

which completes the proof. ���

Lemma G2 For any sequence {αin} with E(||αin||) = O(1),
∑

ij wij‖αin(Qin−Qjn)‖ = op(n/hdzn ).

Proof: We have∑
ij

wij‖αin(Qin −Qjn)‖ ≤
∑
ij

wij‖αin(Qin −Qjn)‖
(
I(‖zi − zj‖ > τn) + I(‖zi − zj‖ ≤ τn)

)
≤ (2CwMq/k)

∑
ij

‖αin‖I
(
τdzn < ‖zi − zj‖dz ≤ Dn

)
+ Cq(τn/hdz+1

n )
∑
i

‖αin‖

≤
(

(2CwnMq/k)I(τdzn < Dn) + Cq(τn/hdz+1
n )

)∑
i

‖αin‖ = op(n/hdzn ),

by lemma G1. ���

Proof of Theorem 7: Because (i) E(||Qin||) = O(1) and by lemma G2, (ii)
∑

ij wij(Qin −
Qjn)′Qin = op(n/hdzn ), and (iii)

∑
ij wij‖Qin − Qjn‖ ‖mθi‖ = op(n/hdzn ), we follow the proof of
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G Proof of Theorem 7

lemma E7 to obtain the expansion

N̂2(θ̂2) = N2(θ0)− nδ̃2
nE(Q′inΓi)E(Γ′iΓi)

−1E(Γ′iQin) + op(nδ̃2
n/h

dz
n )

=
∑
ij

wiju
′
i(θ0)uj(θ0) + δ̃2

n

∑
ij

wijQ
′
i,nQj,n − nδ̃2

nE(Q′inΓi)E(Γ′iΓi)
−1E(Γ′iQin) + op(nδ̃2

n/h
dz
n )

=
∑
ij

wiju
′
i(θ0)uj(θ0) + δ̃2

n

∑
ij

wijQ
′
i,nQj,n + op(nδ̃2

n/h
dz
n ).

Now, by lemma G2,
∣∣∑

ij wijQ
′
inQjn−

∑
i ‖Qin‖2

∣∣ ≤∑ij wij‖Qin‖ ‖Qin−Qjn‖ = op(n/hdzn ). Since∑n
i=1 ‖Qin‖2 ' nh−dzn f(υ)Υ2,

T̂2 =

∑
ij wiju

′
i(θ0)uj(θ0)
D2

+

√
nk(δ̃2

n/h
dz
n )f(υ)Υ2√

k/nD2

+ op(
√
nkδ̃2

n/h
dz
n ). ���
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